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Abstract. The noisy duel between two equally accurate duelists,
possessing respeitively 1 and 2 bullets, is viewed in the light of .cer-
tain asymptotic distributions for their times of first fire. These
distributions,'reflectiné the weaker player's need to anticipatel. are

derived from an approximating sequence of simultaneous games.
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15 “Introduction. The classical noisy duel, say of 1 bullet vs 2,
with equal accuracy and a continuum of opportunities for firing, does not
have a saddle point. Remedies have included 1) "continuizing these ammuni-

4

tion stores ([12], [14]), 2) settling for only e€-good solutions ([2], [11}]),

and 3) placing certain extreme behavioral demands ({4]) on the weaker duelist,

chlling for anticipating the opponent's current action, i.e., for instanta-
neously adapting his own firing plans to that action. A fourth possible
remedy, introduced in [15] and in a sense dual to the first, is to;éllow
only a finite_set of firing opportunities, thus creating approximating
finite simultaneous gaames ([17)), which, as finite games of perfect recall
([13)), admit randomized behavioral solutions, i.e., solutions in the form
of firing time distributions. The asymptotic versions of these distribu-

tions model the anticipation required of the weaker duelist in [4].

~.

~ -
~

A nofnuhimpqggant element of zero-sum two-person game theory is the
quantification (typicaliy in stochastic fashion) of compelling not other-
wise quantified features of strategy; the quantification [19] of bluffing
in poker for example, by behavioral randomization calling for "irrational"
play now and then; or the quantification, by an atom of fi;lng.probability
reserved for the bitter end, of the Kamik:ize ~ommitment of a value - less
single - salvo fighter.in silent duel wit.: atinuously firing opponent.
Still another example, then, is our modeling of the weaker duelist's
instantaneous anticipation by the fact that his asymptotic first-firing
distribution has infinite expectation and straddles that of his opponent.
It seems fair to say that this modeling will be of interest to the degree
that its details will nos be predicta?le intuitively a priori, and in-
deed they do not seem to be. It does ;eem impossible to foretell, start-
ing only from knowing that the players' good strategies somehow are to

be asymptotically stochastically portrayed, whether the same normalization
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will woék for both players, where the two asymptotic firing time distri-
bution; will be situated with respect to one another, or whether I's need
to anticipate'wil} be reflected in incomplete convergence in law of his
normalized fifing time, beyond the infinite expectation of its asymptotic
distribution. What does turn out is given below in (1). Whether portions
of (15 are extrapolatable from TI(1,2) to games of timing generally, we
do not as yet know, although we do know that they are so' extrapolatable

to [I(m,n), as outlined in Section 6.

Consider then two equally accurate duelists, players I and (1I, possess-
ing respectively 1 and 2 bullets, facing a finite grid, with uniform mesh
€, of joint firing opportunities, with the points of the grid calibrated
from 0 to 1 according to bullet lethality p. Dynamic programming yields
an optimal behavioral solution for each duelist, which, among other things,
specifie;\;biimal\pro§abilicies. greater than zero and less than one, of
first firing (strictly Qpeaking just “firing”" in the case of 1) at certain
contiguous grid points near p = 1/3. These probabilities are conditional
on neither duelist having yet fired, and may, for each duelist, be inter-
preted as determining an optimal unconditional distribution of time of
(first) fire near p = 1/3, say ¢1’€ for player I and ¢2,c for
player II. Players I and II are to {ndependently select the time of their
first shot, respectively according to ¢1,E and ¢2,€’ and to fire at the
time sclected unless the opponent has fired before that time.

Though both Ql,c and ¢2’C convergé to degeneracy at p = 1/3
with increasing numbers of firing opportunities, the microscopy of
location-scale norming (Fhe same norﬂing for ¢ and ¢ e) reveals

l,e 2,
two asymptotic distributions on [-1,+x), say ¢1 and @2, with densities
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As indiéated in Section 5, relation (la) may be derived with the aid of
certaiq relatively weak hypotheses clearly indicated by extensive computer
runs; relations (lb), (lc) and (1d) follow from certain strengthened ver-
sions of thesé hypotheses, allowing the expression (34) of Ql and (38)
of ¢, in terms of certain Hermite ecquation solutions.

2
We submit that (la) and (lc) model I's need to anticipate by I's

-

asymptotic firing distribution "straddling" that of 1I, “and that this

need to anticipa%e is also modeled by the upper-tail mass of I's aéymptotic
firing distribution, mass enough to cause (ld) (though not enough to
prevent (1b)).

\ . ' The next 4 sections detail the origins of the findings (1) concern-
ing Ql and @2, together with the derivation of a certa#n associated
differential equation whose solution is discussed in [9]. Section 6
indicate;\;hé extension of che results to ['(m,n).

2, The dynamic programs. As pointed out in the introduction,
restricting firing opportunities to a finite grid ~onverts the noisy
duel into a finite simultaneous game (cf. [17]). The successive infor-
mation sets of this simultaneous game corresponding to no one having
yet fired tell the story: They are Ehe only non-trivial information
sets for the duel T(1,2) treated heré. Since each player possesses

1 precisely one such information set per grid point, we shall speak below

", when we in fact mean to

of a player's behavior "at a grid point p
speak of his behavior at the information sct corresponding to that grid
point.

' - Assuming a uniform grid of mesh'vs. at each of the successive grid
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points p = 1, 1-€, 1-2¢,...,0 proceeding backwards from unity the

players face a 2x2 game with matrix

F ¥
(2a) F 0 1 vhen p =1, and
¥ -1 0
_F F !
(2b) F | -Q-p)? 2p-1 when p <1,
¥ -p | ulp+e]

where u[p+e] 1s the value of the game at the grid point p+e (see
[18}). Since 2p-1 1is never the minimum in its row for p > 0, the
game has a saddle point at (F,F) as long as p > p*, where p* = 0.382
is the solggioﬁ of . 1-p*‘= /p*,

At a grid point p < p*, one of three things can happen. There
may be a saddle point at (F,F), i.e., -p > ulp+e] > 2p-1, which forces
p < 1/3. -

Also, there are gridé of arbitrarily small mesh for which some
grid-point p < p* prgduces a saddle point at (F,F). For example,

if 6§ >0 and N 1s a positive intéger such that
2N-1 > max{2(l-p*)/§, (1-p*)/(1-2p*)},

then the grid of mesh ¢ = 2(l~p*)/(2N~1), which is less than §,
produces a (F,F) saddle point when p = 1-Ne = p*-£/2, It is shown

following (4) that; for given €, a {F.F) saddle point can occur at




most oné grid point p.

The third possibility for a grid polnt p < p* 1is that the
corresponding game has no pure saddle point. As is shown in [18}, the
value ulp+c]l determines the wmixed value u{pl] and the optimal

conditional firing probabilities xl(p] for 1 and xz[p] for 1I:

»

(3a) ulp) = ~{ulp+e](1-p)? + p(1-2p) }/{u[p+e] + p(1-p)},
(3b) x,[p] =clufpte] + p}/{ufp+e] + p(1-p)},
(3¢) x2[p] = {u[p+c] + 1-2p}/{ulp+e] + p(1-p)}.

By inspection of the matrix (2b) of the game, we have in turn that

~ (1-p)? < ~p, i.e., p2 - 3p +1 > 0, that ufp+te) < -p, and that
u[pte] < 2p~1l. The last inequality implies that the denominator in
each °£*539 formulas (3) Is less than =~p? + 3p-1, which is negative.
Evidently, ;ﬂed, both, xI[p] and xz[p] are positive. Morcover, it

is straightforward to show that formulas (3) imply that

(4a) ulpl +p = - (p*-3p+1) x,[pl,
(4b) ulpl + 1-2p = - p2 xz[p], -
(4c) ulpte] - ulp] = {ulpte]l + p(1-p)} x;[p] x,(pl,

4.

all of which are negative.

In particular, ufp] < -p < -(p-€), so the game at the next grid
point p-c¢ has no saddle point at (F,F). This implies that 1f, in
the backwards 1nduc;1on process, a (F,F) saddle point occurs for the
first time at a g}ig point p+e, where € < (p*-1/3)/2, then necessarily

p*~€ < p+c < p*. Also, if this happehs, then the game for the next grid
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point é has the matrix (2b) with u[p+€] = -(ptc), so it does not have
(F,F) as a saddle point. This discussion shows that the (F,F) saddle
point phenome?on can occur at most once for a given mesh €, either at
p* (if that héppens to be a grid point) or at the first grid point less
than p¥*.

ﬁence, we can conclude that, for ¢ small, there 1s a largest grid
point p(g) at which the game has no pure saddle point; and that
p* - 2 < p(e) <'p*. Starting at p(e) and continuing backwards,jﬁe
move through a succession of grid points p at which mixed opt.mal
strategies obtain. Since (4c) implies that wu[p+e] < u[p), the value of
the game increases as we proceed backwards. Moreover, the game at
P = E(e) + £ has a pure saddle point at either (F,F) or (F,F). So,
the value u[p(c) + €] has one of the forms -(1-p)? or -p, and is
thereforé\éréate:,;hap +i. It follows that we must even;ually arrive
at a smallest grid poiné p(e) for which ulp(e) + €] < 2p(e) - 1, {i.e.,
for which random strategies occur.

Finally,-the matrix (2b) for the game at p = p(e) - € has ufp(e)])
in the (F,F) entry, so it has a saddle point there. PrdEbeding induc~-
tively backwards, then, the same situation holds for 0 < p < p(g).

The conditional firing probabilities xllﬁ(e)],....xlﬁ(c)] deter-
mine the unconditional firing time distribution ¢1’€ of the introduction.
An analogous interpretation holds as well for the sequence leﬁ(e)],...,les(c)]
and the corresponding distribution ¢2 . The next sections discuss the

gt

scaling of ¢1 ¢’ and @2 e and consequent derivation of their asymptotic

counterparts Ql and @2. 3




3. tAsymptotic scaled values and probabilities of fire. For a
finite grid (1, l-¢, 1-2¢,...,0), let p(e) and p(€), respectively,
be the smallesF and largest grid points from Section 2 at which the
corresponding éxz game has no pure saddle point. Also, let R(c) = 1/3-p(c),
let 6(e) = €/8(e) and, for t > -1, let p(t,£) be the largest grid

point that does not exceed 1/3 + tB(g). This allows writing

(5a) p(=1,e) = p(e)

and, for t > -1,
(5b) p(t,e) =1/3 + tB(e) + £(t,e),

where - € < f(t,€) < 0. We introduce the step-functions u(t,e) = u[p(t,€)],
xl(tiel\é‘xl[p(t,e)]. xz(t,s) = xz[p(t,e)], and note that the definitions
of ‘p(t,C)\\Aﬁd"G(E) \imﬁly that u(t + 0(e),e) = uf[p(t,e) + €] and
similarly for the other c&o functions evaluated at (t + 6(€),c).

Extensive computer implementations in [18] of the dynamic programs
of Section 2 point to the following hypotheses concerning B(¢) and

.

u(t,e):

HYPOTHESIS A. There is a positive number C such that

Y

(6a) B(e) = CVE + o(VE).

HYPOTHESIS B. There is a function v(t), differentiable for t > -1

and right-differentiéble at t = -1, such that, if t > -1, then

(6b) u(c,c) = - 1/3 - V(t)O(C) + g(tﬁc))
. {




where fo% each t,g(t,e) = o(/©) and g(t+b(e),e) - g(t,e) = o(c).

A simple application of the definition of the derivative v(t) results in
) u(t+8(e),€) = u(t,€) = - v'(£)0%(e) + h(t,c),

where for each t, h(t,€) = o(e). We proceed to use results from Section
2 to detive a differential equation that v(t) must satisfy under Hypoth-
eses A and B. ' B
First, for t > -1, we can choose € sufficiently small so that the
2x2 game for the grid point p(t,c) has no pure saddle point, i.e., so
that p(g) < p(t,e) 5_3(6). This holds by definition when t = -1. For
t > -1, the inequality p(€) < 1/3 + tB(e) is equivalent to O :_(1+t)B(€)//E:
But this must hold for € small, since Hypothesis A implies that as

e +07, (1+t)B(e)/YE + (1+t)C, which is positive. Also, 1/3 + tB(e) + 1/3

e
~

while the iﬁcdualities p*-2¢ < ;(e) < p* force ;(a) + p*¥ as ¢ =+ O+.

so 1/3 + tB(e) < p(e) for small €.

Hence, we can apply (4c) to (7), obtaining

8) - v'(t) + M) o y(e40(e) ) - ult,e)}/0%(e) -
8% (e)
xl(t,c) xz(t.c)
= {u(e0(ej e} + p(t.e) A-p(8. ) 57y 575

The definition of 6(c), together with Hypothesis A and the fact that

h(t,e) = o(g), imply that h(t,e)/0%(e) » 0 as € » 0+. And relations

(5) and (6) imply that the expression in braces on the right side of (8)
approaches - 1/9 as ¢ » ot.

Relations (4a) and (4b) can be uged in- conjunction with (6b) to




calculate

(9) ' xi(t) a lim xi(t,e)/O(e) for 1 =1,2.
-+
N e+0

For, if we use (4a) we can write

T x (60 _
10y - G(téigll-B + L(té‘(ié)lm} : [p?(£,0)=3p(t,e)+1].

1f we use relations (5) together with Hypotheses A and B, we obtain, as

11) xl(t) = 9{v(t) - C?t].

Similarly, if we start from (4b), we get

~
-

\-xz(t’c)\; ule,e)+1/3  2(1/3-p(e,e))\ .
(12) 8(c) = =\ O(C) + O(C) - P (t,€),

which, as € —+ 0+, yields

(13) xz(t) = 9[v(t) + 2c%t].

Returning to relation (8) with these results and letting € - 0+, we find

that for, t > -1, v(t) must be a solution of the Riccati equation
(14) vi(e) =179 x (£) x,(t) = 9(v(t)-C?t][v(t)+2C*t].

We can obtain ‘an initial condition for v(t) at t = -1 by

examining (12) with t = -1 or, what amounts to the same thing, (4b)

with p = p(e). Noting that 0(c) >|0 for € small (since 0(e)/Ye + 1/C

as € O+), we have from (4b) that




as) 10> -p2(e)x,[5(€)1/0(c) = (ulB(e)1+1-2()) /6(e).

On the other hand, the definition of $(c) and consideration of the

2x2 matrix (2t) for p = p(e)-¢ shows that u[p(e)) > 2(p(c)-€) - 1.

Hence, the right member of (15) Is not less than =2¢/0(g) = -2§(¢),
which_approaches 0 as ¢t = 0+. Since p3(e) > 1/9 as ¢ ~» 0+, we
conclude that ’
o _ - _ - e
(16) x,(-1) = lin x,(-1,€)/8(€) = 0. ’
e+0

By (13), this can be written as

an v(-1) = 2c2.

Furthermore, the limit relations (9) together with the negativity

-~
-

of the quantities\in (4a)» and (4b) imply that xl(t) >0 and x2(t) >0
t > -1. Hence, (1l4) implies v'(t) > 0. Applying this to (13) gives

xé(t) :_1802 > 0. Hence, by (16),
(18) xz(t) >0 for t > -1.

To show that xl(t) is strictly positive, suppose xl(to) = 0 for
some to. Then (11) and (17) rule out to = -1. But 1if this were to

occur at some to > -1, then the fact that xl(t) >0 for > -1
would imply that xl(t) would have a global minimum at an interior
point of its domain. So, xi(to) = 0 which, by (11), says v'(to) = C2,

But (14) with xl(to) = 0 says v'(to) = (O, a contradiction. Therefore,

(19) x(t) >0  fob t 2> -L
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This, coupled with (11) and (12), gives

(20) x,(t) > 27¢%t  for t > -1,

which is a stfonger statement than (18) for t > 0.

J. C. Kegley has proved in {9] that, given any C > 0, there is a
uniqué solution of (14) that satisfies (19) for large values of t, and
that the solution exists for all t. Two forms of the sdlution are given
in terms of the confluent hypergeometric functions. One of the foth.
which will be gsed in Section 5, is

5 ¢'(s)
21 v(t) = ¢t - = ,
(21) () 3 V(s)
where & = Cv¥27/2, s = 6t, and Y(s) 1is the solution of the Hermite

equatiGn\u~\>
) A

(22a) P'(s) - 2s P'(s) - 2/3 Y(s) =0

that satisfies the initial conditions

(22b) $(0) = 1, ¥'(0) = -2I'(2/3)/T(1/6).

The second form of the solution is used to prove that condition (17)

then determines C wuniquely, namely, C = - 20//27, where z0 is the

zero of the Weber parabolic cylinder function (z). A numerical

a3

approximation of z_ furnished by R. J. Lambert gives

0

(22¢) . C = 0.090637 + 3x107°,

This is in good agreement’ with the value .09067 of B(¢)//E obtained




for ¢ =="1.S><10'-8, the smallest of the €'s wunderlying the computer

runs leading to Hypotheses A and B, and cnhances the credibility of these

hypotheses.

4, Asymptotic distributions of first fire. Consider now, for
t >-1 and ¢ small and positive, the probability $1'£(1/3+B(c)'t) E
1-¢1'€(1/3+B(€)-t) that playe? 1 fires at or after the §t1d point ‘
p(t,e) + € giveng as always, that player II has not already fired.. If
we denote by I(t,e) the collection of all grid points p with
p(e) < p < p(t,€), where ¢ is small enough so that p(e) < p(t,e) < p(e),
then we have, by independence of random moves under a behavioral strategy,

(23) O, (U/34R(e)eE) =TI (1-x, [p]) .
’ pel(t,cE)

-

By analyzing the natural dogarithm of $1 E(1/3+B(c)-t), we will show

that, as ¢ -+ 0+, 31 €(1/3+8(C)-t) tends to the limit
”

(24) | T (t) £ exp(- SO, x (DdD).

Thinking of t > -1 as fixed, recall now that, as indicated above
following (5b), xl(T,e)/O(c) is a step~function for -1 < 7T < t, with

uniform step-size 0(c). Hence, we miy write

(25) I xle) = S5 (e /0 1,
pcI(t,€)

where t(c) <t <‘t(c) + 0(e) by definition of p(t,e).
In order to show that, as € - 0+, xl(I,L)/O(E) tends to xl(T)

. [
uniformly for -1 < 1 < t, we invoke Hypothesis B. This hypothesis says
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that che‘step-functions (u(t,€) + 1/3)1/0(e) converge pointwise to
~-v{1), ghich 1s assumed to be differentiable and, hence, continuous.
But (4c) and the fact that 08(€) > 0 shows that for each ¢, the
corresponding écep—function is a non-increasing function of Tt. By
a well-known theorem (see for example page 90 of [3}]), it follows that
[ufT,é) + 1/3]1/6(e) converges uniformly to -v(T) on the compact
interval ({-1,t]. ' "

Inspection of relation (10) and the definition of p(t,€) now:w
makes it clear that the step-functions xl(r.e)/ﬁ(c) converge uuiformly
to xl(r) on [-1,t], which, since t(g) *t as ¢ ~» 0+, allows

concluding from (25) that

(26). L xllp] i fflxl(t)df as € +0 .
~~~._  Pel(r,c) |

Y !
- :
We also note that, since 6(c) >0 as € » 0+, the uniform convergence
of x;(1,6)/0(e) to x,(1) for -1 <1<t forces

@n ) sup x;[(p] *0 as e=>0.
pel(t,€) -

Now we examine

(28)  log @) (U/3MB()'e) + L x[pl = T {log(l-x[ply4xlpl}.
’ peI(t,c) pel(t,e)

By Taylor's theorem, we have log(l-xl[p]) + xllp] = r(p), where

]r(p)i :_(xl[p])z[z(l-xllp])z. If we choose € small enough so that,

by (27), sup xl[p] < 1-1/v2, we find that lr(p)l < (xllp])z for
pel(t,e) . |

pcl(t,e). Therefore the right member of (28) has absolute valuc¢ not

exceeding

-li-L--.-;;-......._..__.u_____i__.__._'.____ "




ey T

‘ I (qleh?< sup xlp)l -+ I x(pl,
pel(t,¢) pel(t,€) pel(t,c)

which approaches :O. as € -+ 0+ by (26) and (27). By (26), then,

log $i,c(l/3+8(c)'t) > —fflxl(l)dt as ¢ - 0+,

so 31 6(1/3+B(c)-t) converges to El(t) as defined by (24).

Hence, ¢1 e9/3+8(€)-t) =1 - Ei e(1/3+B(c)-t) tends, as € 1,0+,

to a cdf ¢1(t) =1 -'31(t) with hazard rate xl(t) (sce for example
f1] for discussions of the concept of hazard rate in its usual éontext

\ , of reliability theory), which we call 1's asymptotic distribution of
time of (first) fire. Analogously, xz(t) is the hazard rate of II's
asymptotic distribution ¢2(t) of time of first fire.

Herce, if T

is Player I's time of (first) fire under mesh
A

l,¢
).

€, (T1 -~1/3)/8(c) 1is scen to converge in law to the cdf ¢, with hazard

1

rate X1 and an entirely analogous argument and conclusion hold for
Player I1. Normalization is by the location parameter 1/3 and the scale
parameter B(c), the latter in effect stretching the shrinking interval
[p(c), 1/3] into the unit interval [-1,0]. Of course, in view of
Theorem 2 (page 42) of (7], essential}y no other normalization will

work.

Having obtained these results, we can now look back on their

derivations and see why Hypotheses A and B constitute an efficient sct

of assumptions. We do this by attempting to alter lypotheses A and B

to the natural alternative Hypotheses A', B' and D below, equally

- plausible in the light of the compu:e}rruns, and showing that we are




driven Lack to A and B.
To begin with, we now postulate, with 6(c) = ¢/B(e) and

B(e) = 1/3 - _6(8)_,

HYPOTHESIS ', R(g) » 0+ as &€ - 0+, which implies that
p(t,e) ~ 1/3,

HYPOTHESIS B'. There exists a function v(t) on ”[—1,+00 such
that (u(t,e) + é/3)/9(€) has limit - v(t) as ¢ ~ 0+.
and

HYPOTHESIS D. There exists a function xl(t) on [—l,+“0< such
that x,(£,£)/8(c) has limit x () as €~ 0,

Then (10) implies the existence of the limit, as € -+ 0+, of
(p(;,c) - 1/3)/8(¢) on [-1,+w), and the definition of p(t,e) then

+

impliéé‘the existence of the limit, say C, of f((c)/v¥e as ¢+ 0,

A
-

which in turn implies} by relation (12), the existence of the limit

xz(t) of xz(t,e)le(e) on [~1,+w) as € =+ ot.
Now, if it were true that C = 0, then (11) and (13) would say

xl(t) - 9v(t)r- xz(t) for all t > -1. Furthermore, we could arrive

at the key relation (8) with the left member replaced by
= [v(et0(e)) = v(£)1/0(e) + [g(t+0(¢),e) - g(t,e)1/6%(c),

and there seems to be noc reasonable way to utilize this relation with-
out strengthening Hypothesis B' to Hypothesis B, in which case the
differential equaci;n (14) becomes v'(t) = 9v2(t), while the initial
condition (17) b;comes v(-1) = 0, But the only solution of this

{

initial value problem is’ v(t) = 0. ‘rhat in turn forces xi(t) =0,




correspohding to no non-degenerate cdf's ¢1(t). This we are forced to
conclude that C > 0, which amounts to strengthening Hypothesis A' to

Hypothesis A,

3

5. Comparison of asymptotic distributions. Some relationships
between the cdf's ¢1(t) can be derived under hypotheses weaker than
A and B, If we assume, again based on the pre-asymptotic computer runs,

that A holds but ghat B is weakened to:

u(t,e)+1/3

B': For t > -1, lim ) = - v(t) exists,

e»ot

then our derivations in Section 3 obtain the existence and non-negativity

of the limits xi(t) = 1iqL xi(t,c)/e(c), and also formulas (11) and (13)
£+0

for,'xi(t). From these formulas we can see that the hazard rates are

related by - A

(29) x,(t) = x () + 27¢%c .
In the derivation of the formulas
(30) 6;(t) = exp(- fflxi(l)dr)
we needed A and : .
B": Hypothesis B' holds and v(t) is continuous.
Thus, under A and Bt, relations (29) and (30) give

(31) © T B,(e) = expls’(Q-t?)) ¥ (1),
' . [
where & = C/27/2. This implies the comparisons
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(32) ¢i(t) > @2(t) for - 1<t <1l and Ql(t) < ¢2(c) for t > 1,

which is to say that ¢2 is more highly concentrated about the normalized
firing time lzthaﬁ is ¢1.
Hypotheses A and B" also imply that the densities

(13) £4(6) = = B(0) = %, (&) exp(~ JS x (1)dD)

are defined and fion~negative. However, it is not apparent that riédrous
analysis of thgse densities can be done without invoking the full force
of A and B. Since these hypotheses eventually lead to formula (21) for
v(t), it is evident that the analysis of the densities depends critically
on the properties of the solutions Y(s) of problem (22). For example,

formulas (11) and (21) imply that xl(t) = - é% ln{w(s)[. hence that

T

—

A T T = we ).

As is shown in [9), ¥(s) > 0 for all s and y(s) -+ O+ as

s = 8t » +», s0 that Iflxl(t)dt = +o , and, in view of (33),

(35) I7E (e = 1

Y

this is to say that, even though I's stmptotic firing time distribution
is heavy-tailed compared to that of 1I, the convergence of I's normalized
firing time distribution is complete.

Relation (29) implies that fflxz(t)dt = 4o also. Hence (33)
yields as well th;tl fflfz(t)dt =1,

Inspection of figure 1, based on!the computer runs, suggests the




results that

(36) : (1) mode (¢1) = -1 and (11) mode (¢2) > 0.

If both A and é hold, then the results of [9] can be used to establish

(i), based on (34) and the facts that ((s) 1is positive, decreasing,

an; convex, and also to derive (ii) from a special relationship between

Y(s) and the Weber parabolic éylinder functions D-1/3 “and D2/3.4 In
o~ t

particular, the differential equations analysis leads to an approximation

mode (¢,) = 1.5058, furnished by R. J. Lambert, which, as figure'l suggests,

is in accordance with the computer runs.
No amount of inspection, however, will suggest that

an (1) mean (3,) <= and (ii) mean (¢)) = .

~
~.
~.

A

Under A and B; we can use (31), (34), and the definition of 5i(t) to

get

(38) C o B,(0) = expl87(1-tD)] Y(s)W(-6).

The facts that Y 1s positive and decreasing force ‘$2(t) to be trapped
between 0 and exp(87(1-t%)], which.leads to (37(1)). The infinite
expectation for player I is established in [9], based on the fact that

$1(t) = y(6t) /Y(~8) behaves like t-1/3 as t + ™,

6. The m vs. n case. We conclude with a brief outline of how
results analogous to the above are obtained for the m vs. n equal-

accuracy noisy duel, where m < n. The details of the derivations
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can be fbund in [9] and (10].

The analysis begins with the replacement of the matrix (2b) by

F F
" —nY? -
Fooo@-p)lug g o fprel p+ (I=pluy_, [p*e]
3 -p+ (l-p)um'n_llpﬂ:] um’nlpﬂ]

“

where (pt+e] .is the value of the i vs. j game at the grid point.

ui,j

p+€. In particular, this value is 0 1if 1 =3 and is =1 {if i = 0.
Hypotheses.A and B are modified suitably, again based on computer

runs for some small values of m and n. Based on those hypotheses, we

can adapt the methods of Sections 3 and 4 above to derive the following

formulas for the asymptotic distributions @1 and ¢2 of the players'

normaliiéd~times of first fire.
- - B3
" The cdf 51(t) 2 W(S)/W(SO)- where s = §(t+n) with § > 0, - n
is the value of t > -1 where the two players' hazard rates are equal

(which is zero in the case 1 vs. 2), 8, = §(-14+n), and ¢ 1s the solution

of the Hermite equation

"(s) -~ 2sy'(s) - 4ay(s) = 0, a = m/2(mtn),

-

that satisfies the initial conditions
$() = 1, '(0) = - 2l (a+)s) /I (a).

The cdf 32(:) = G(t) 751(;). where G(t) = exp(s; - s2).

Based on these formulas and the properties of the function ¢

. f
derived in [9], we find that v




¢léz) > 0,(t) for -1<t<l-2n, & (£)< ®,() for t > 1-2n

lim @i(t) =1

t-oo
and that mode (@l) = -1 < = n < mode (¢2) while -1 < mean (¢2) < mean (@l),
with mean (@1) = 4o, Thus, we have the Inequalities (1la) and (lc)
for the m vs. n case while maintaining the weaker player's complete

convergence of normalized firihg time, and infinite normalized firing

&
time expectation.

|
|
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